STREAMLINE REAL TIME INGESTION AND SERVING WITH DLT AND ONLINE TABLES

Magnus Johannesson

Solutions Architect and Data Engineer

- 30 years in the IT industry
- Developer, application architect, integration architect, enterprise architect
- 13 years in analytics
- 5 years working with Databricks
- Self-employed consultant since 2017

Sanjeev Kumar

Specialist Solution Architect



- 12 years in the IT industry
- Data Engineer
- With Databricks for 2 years

STREAMLINE REAL TIME INGESTION AND SERVING WITH DLT AND ONLINE TABLES

Agenda

- Västtrafik: Our business
- Use case and problem description
- Architecture
- Pipeline Implementation
- Future improvements
 - Online Store Serving
- Demo
- Key takeaways

VÄSTTRAFIK

Västtrafik

Västtrafik

40 partner companies

470 employees

9,000 employees including our partners

301 million

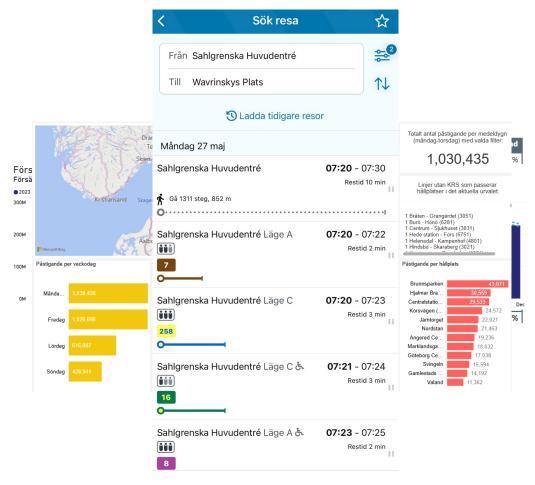
trips, 2022

Pushing development together with

49 municipalities.

Some of our data

- Planned traffic data
- Real-time data
- Automatic passenger data
- Ticket data
 - O Sales
 - O Validations
 - O Ticket inspections

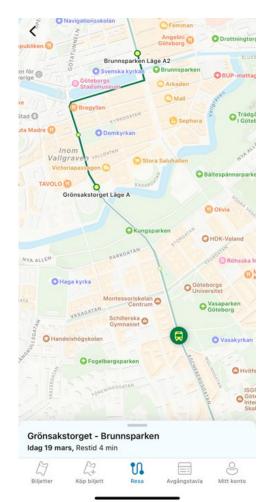


USE CASE

Use Case

Real-time position of Västtrafik's vehicles

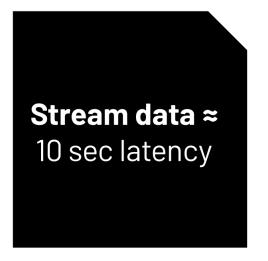
- Trams & buses
 - GPS position, vehicle ID, line, stops, etc.
- Trains
 - Only GPS position and internal vehicle ID
- Proof of Concept (PoC)
 - Enrich using existing data
 - Test streaming data in Databricks
- Target latency 10 sec



Project Goals

Improve **Customer Satisfaction**

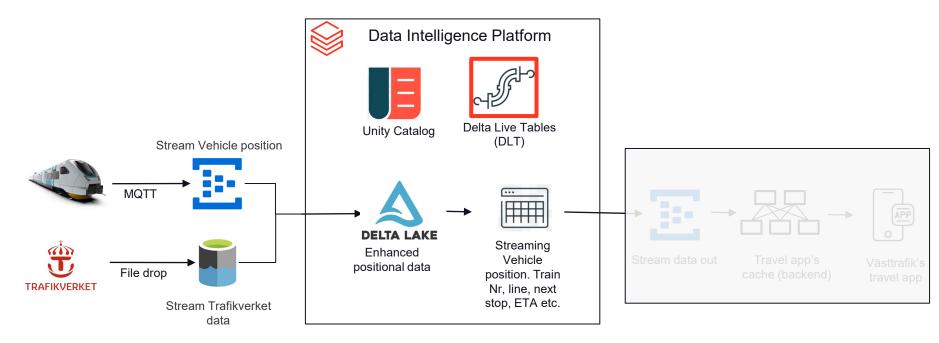
Ease of development and Maintainability



ARCHITECTURE

Architecture

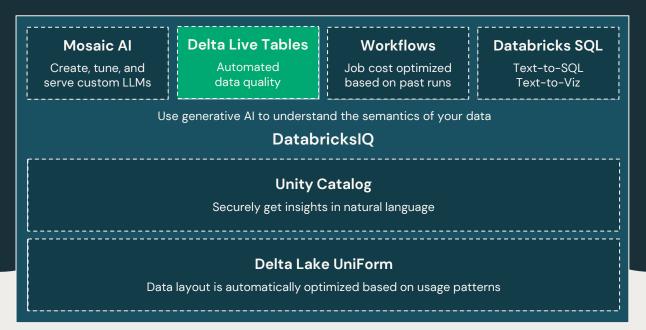
Streaming with Delta Live Tables



15

WHY THIS ARCHITECTURE?

Databricks Data Intelligence Platform



Open Data Lake

All Raw Data (Logs, Texts, Audio, Video, Images)

Delta Live Tables

The declarative way to do ETL on the lakehouse

CREATE STREAMING TABLE raw_data
AS SELECT *
FROM cloud_files ("/raw_data",
"json")

CREATE MATERIALIZED VIEW clean_data
AS SELECT ...
FROM LIVE.raw_data

Accelerate ETL development

Declare **SQL or Python** and DLT automatically orchestrates the DAG, handles retries, changing data

Automatically manage your infrastructure

Automates complex tedious activities like recovery, auto-scaling, and performance optimization

Ensure high data quality

Deliver reliable data with built-in quality controls, testing, monitoring, and enforcement

Unify batch and streaming

Get the simplicity of SQL with freshness of streaming with one **unified API**

PIPELINE IMPLEMENTATION

Data Metrics

Streaming

Arrival & Departure ≈ **500 files/hr**

Streaming

Positions ≈

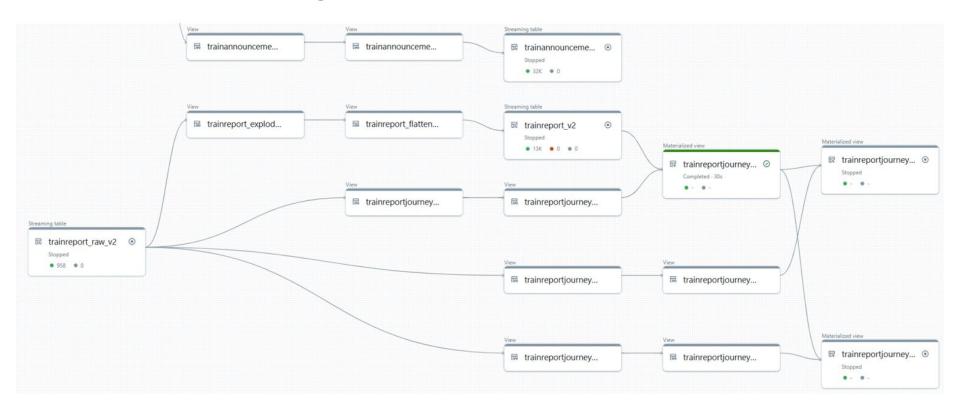
400 000 pos/hr

Batch

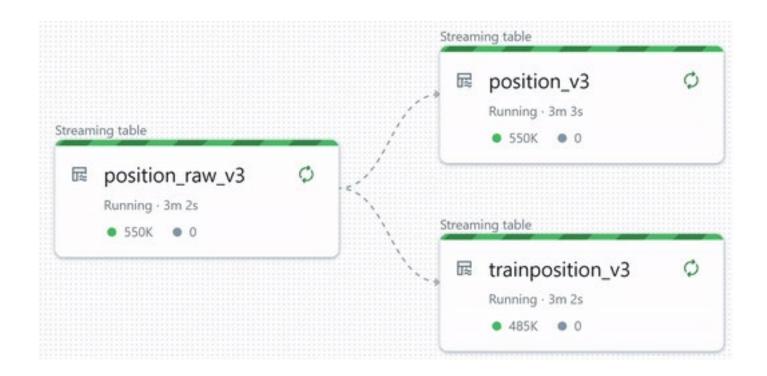
Vehicle and Planned Traffic

- Daily

DLT Streaming Pipeline 1



DLT Streaming Pipeline 2



Implementation

DLT Pipeline 1

 Train Arrival and Departure data is streamed as files.

> DLT for both Batch and Streaming Data

Dependency management Auto Optimizations

DLT Pipeline 2

- Train Positions data is streamed from Event hub.
- Joined with Batch data i.e. Vehicle and Planned Traffic, and creates final Train Positions table.

OPTIMIZATIONS

Top Optimization

Optimize for latency

We started with ~ 2 minutes of latency.

Architecture
Reduced
Data Hops

Data layout
Enabled
Deletion
Vectors

Increased
Minimum
Workers

Cluster
Enabled
PHOTON

Final outcome was ~ 10 seconds latency.

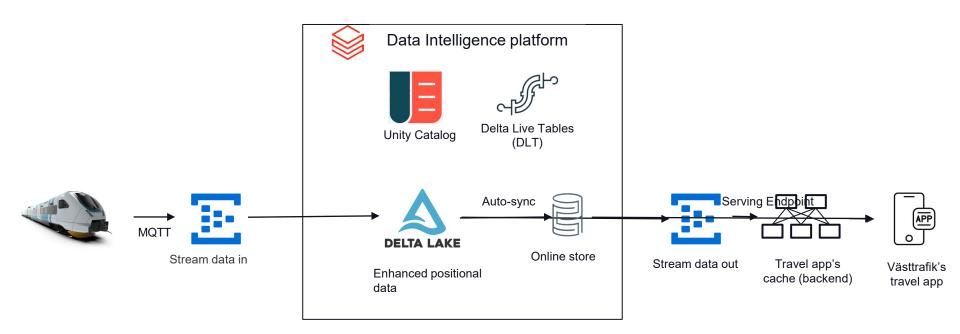
Event hub Optimizations

- Event hub: Kafka interface has better read speeds.
- Use maxOffsetsPerTrigger for rate limiting.
- Kafka fan-out: Set minPartitions to increase the read throughput if cluster has more compute.
- Partitioning
 - Too many: Increase the number of CPUs to match no of partitions
 - Too few: You may not be able to handle more load due to TU limits

Future Improvements

Proposed Architecture

Introducing Online Tables



Databricks Online Tables

Data Serving from Lakehouse

- Complexity
 - Online store infrastructure management
 - Data pipeline management

- Performance
 - Lookup latency
 - Data freshness
 - Dynamic scaling

- Cost
 - Cost of publishing data to online store

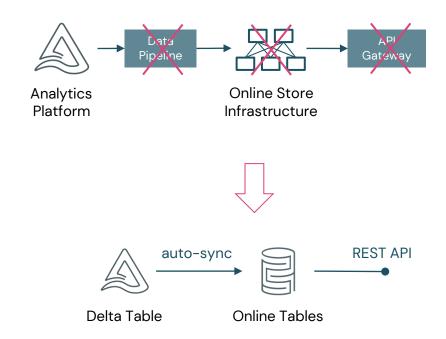
Databricks Online Tables

Simplicity

- Fully managed serverless online store
- Fully managed data synchronization pipeline
- Unified governance with Unity Catalog
- Zero-configuration Serving

Speed

Lookup latency (< 10 milliseconds)



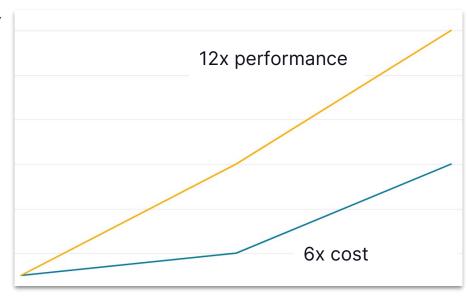
DEMO

Serving with Online Table

Pre-recorded demo

Cost

- Compute cost affected due to multiple DLT pipelines and latency needs
- Storage cost affected due to continuous reads and writes
 - Depends on chosen redundancy
- Tune the cluster
 - Cheaper node type
 - Max worker nodes



Key takeaways

DLT for pipelining and **Online Tables** for Serving

Reached Desired latency of 10s

QUESTIONS?

